Course Outline
Introduction
- Kubeflow on AWS vs on-premise vs on other public cloud providers
Overview of Kubeflow Features and Architecture
Activating an AWS Account
Preparing and Launching GPU-enabled AWS Instances
Setting up User Roles and Permissions
Preparing the Build Environment
Selecting a TensorFlow Model and Dataset
Packaging Code and Frameworks into a Docker Image
Setting up a Kubernetes Cluster Using EKS
Staging the Training and Validation Data
Configuring Kubeflow Pipelines
Launching a Training Job using Kubeflow in EKS
Visualizing the Training Job in Runtime
Cleaning up After the Job Completes
Troubleshooting
Summary and Conclusion
Requirements
- An understanding of machine learning concepts.
- Knowledge of cloud computing concepts.
- A general understanding of containers (Docker) and orchestration (Kubernetes).
- Some Python programming experience is helpful.
- Experience working with a command line.
Audience
- Data science engineers.
- DevOps engineers interesting in machine learning model deployment.
- Infrastructure engineers interesting in machine learning model deployment.
- Software engineers wishing to integrate and deploy machine learning features with their application.
Testimonials (5)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Course - MLflow
Amount of Information, Exercises
Lukasz Kowalski - Sii Sp. z o.o.
Course - AWS IoT Core
Machine Translated
All good, nothing to improve
Ievgen Vinchyk - GE Medical Systems Polska Sp. Z O.O.
Course - AWS Lambda for Developers
IOT applications
Palaniswamy Suresh Kumar - Makers' Academy
Course - Industrial Training IoT (Internet of Things) with Raspberry PI and AWS IoT Core 「4 Hours Remote」
Later the balance between theory and practice was much better. But the beginnings were terrible. The way of expressing (language) is very calm, understandable, in a human way.
Lukasz Derkowski - NetworkedAssets Sp. z o.o.
Course - AWS CloudFormation
Machine Translated