Design for Six Sigma (DFSS) Training Course
Design for Six Sigma (DFSS) is a systematic approach to designing or redesigning products, services, or processes to meet customer expectations and achieve higher quality and performance.
This instructor-led, live training (online or onsite) is aimed at intermediate-level engineers and designers who wish to use DFSS to ensure that quality is built into the product or process from the start of the design phase.
By the end of this training, participants will be able to:
- Understand the principles and concepts of Design Six Sigma (DFSS).
- Learn the DMAIC (Define, Measure, Analyze, Improve, Control) and DMADV (Define, Measure, Analyze, Design, Verify) methodologies.
- Apply DFSS tools and techniques to design and optimize processes.
- Develop skills to manage and lead DFSS projects effectively.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction to Design Six Sigma
- History and evolution
- Key principles and benefits
- Differences between DMAIC and DFSS
Introduction to DFSS
- Definition and objectives
- Comparison with traditional Six Sigma
- Key components of DFSS
DFSS Methodologies
- Overview of DMAIC
- Introduction to DMADV
- Selecting the appropriate methodology
Define Phase
- Identifying customer needs and requirements
- Defining project scope and objectives
- Voice of the Customer (VoC) techniques
Measure Phase
- Identifying key metrics and data collection
- Measurement system analysis
- Process mapping and flowcharting
Analyze Phase
- Data analysis techniques
- Root cause analysis
- Design of Experiments (DOE)
- Failure Modes and Effects Analysis (FMEA)
Design Phase
- Concept development and selection
- Robust design principles
- Simulation and modeling tools
Improve Phase
- Optimizing design for performance and cost
- Prototyping and testing
- Lean principles in design
Verify Phase
- Validating design solutions
- Pilot testing and feedback
- Verification and validation techniques
Control Phase
- Implementing control plans
- Sustaining improvements
- Project documentation and reporting
DFSS Project Management
- Leading DFSS projects
- Change management strategies
- Effective communication and stakeholder management
Summary and Next Steps
Requirements
- Basic understanding of Six Sigma principles
- Familiarity with general quality management concepts
Audience
- Engineers
- Designers
Open Training Courses require 5+ participants.
Design for Six Sigma (DFSS) Training Course - Booking
Design for Six Sigma (DFSS) Training Course - Enquiry
Design for Six Sigma (DFSS) - Consultancy Enquiry
Consultancy Enquiry
Testimonials (5)
The variation with exercise and showing.
Ida Sjoberg - Swedish National Debt Office
Course - Econometrics: Eviews and Risk Simulator
it was informative and useful
Brenton - Lotterywest
Course - Building Web Applications in R with Shiny
Many examples and exercises related to the topic of the training.
Tomasz - Ministerstwo Zdrowia
Course - Advanced R Programming
the trainer had patience, and was eager to make sure we all understood the topics, the classes were fun to attend
Mamonyane Taoana - Road Safety Department
Course - Statistical Analysis using SPSS
The pace was just right and the relaxed atmosphere made candidates feel at ease to ask questions.
Rhian Hughes - Public Health Wales NHS Trust
Course - Introduction to Data Visualization with Tidyverse and R
Provisional Courses
Related Courses
Programming with Big Data in R
21 HoursBig Data is a term that refers to solutions destined for storing and processing large data sets. Developed by Google initially, these Big Data solutions have evolved and inspired other similar projects, many of which are available as open-source. R is a popular programming language in the financial industry.
Data Mining with R
14 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has a wide variety of packages for data mining.
Econometrics: Eviews and Risk Simulator
21 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at anyone who wishes to learn and master the fundamentals of econometric analysis and modeling.
By the end of this training, participants will be able to:
- Learn and understand the fundamentals of econometrics.
- Utilize Eviews and risk simulators.
Forecasting with R
14 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at intermediate-level data analysts and business professionals who wish to perform time series forecasting and automate data analysis workflows using R.
By the end of this training, participants will be able to:
- Understand the fundamentals of forecasting techniques in R.
- Apply exponential smoothing and ARIMA models for time series analysis.
- Utilize the ‘forecast’ package to generate accurate forecasting models.
- Automate forecasting workflows for business and research applications.
HR Analytics for Public Organisations
14 HoursThis instructor-led, live training (online or onsite) is aimed at HR professionals who wish to use analytical methods improve organisational performance. This course covers qualitative as well as quantitative, empirical and statistical approaches.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Marketing Analytics using R
21 HoursAudience
Business owners (marketing managers, product managers, customer base managers) and their teams; customer insights professionals.
Overview
The course follows the customer life cycle from acquiring new customers, managing the existing customers for profitability, retaining good customers, and finally understanding which customers are leaving us and why. We will be working with real (if anonymous) data from a variety of industries including telecommunications, insurance, media, and high tech.
Format
Instructor-led training over the course of five half-day sessions with in-class exercises as well as homework. It can be delivered as a classroom or distance (online) course.
R for Data Analysis and Research
7 HoursAudience
- managers
- developers
- scientists
- students
Format of the course
on-line instruction and discussion OR face-to-face workshops
Introduction to R
21 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has also found followers among statisticians, engineers and scientists without computer programming skills who find it easy to use. Its popularity is due to the increasing use of data mining for various goals such as set ad prices, find new drugs more quickly or fine-tune financial models. R has a wide variety of packages for data mining.
This course covers the manipulation of objects in R including reading data, accessing R packages, writing R functions, and making informative graphs. It includes analyzing data using common statistical models. The course teaches how to use the R software (https://www.r-project.org) both on a command line and in a graphical user interface (GUI).
R
21 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has also found followers among statisticians, engineers and scientists without computer programming skills who find it easy to use. Its popularity is due to the increasing use of data mining for various goals such as set ad prices, find new drugs more quickly or fine-tune financial models. R has a wide variety of packages for data mining.
Neural Network in R
14 HoursThis course is an introduction to applying neural networks in real world problems using R-project software.
Advanced R Programming
7 HoursThis course is for data scientists and statisticians that already have basic R & C++ coding skills and R code and need advanced R coding skills.
The purpose is to give a practical advanced R programming course to participants interested in applying the methods at work.
Sector specific examples are used to make the training relevant to the audience
Statistical Analysis using SPSS
21 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at beginner-level to intermediate-level professionals who wish to perform statistical analysis using SPSS to interpret data accurately, run complex statistical tests, and generate meaningful insights.
By the end of this training, participants will be able to:
- Navigate the SPSS interface and manage datasets efficiently.
- Perform descriptive and inferential statistical analyses.
- Conduct t-tests, ANOVA, MANOVA, regression, and correlation analyses.
- Apply non-parametric tests, principal component analysis, and factor analysis for advanced data interpretation.
Talent Acquisition Analytics
14 HoursThis instructor-led, live training (online or onsite) is aimed at HR professionals and recruitment specialists who wish to use analytical methods improve organisational performance. This course covers qualitative as well as quantitative, empirical and statistical approaches.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to Data Visualization with Tidyverse and R
7 HoursThe Tidyverse is a collection of versatile R packages for cleaning, processing, modeling, and visualizing data. Some of the packages included are: ggplot2, dplyr, tidyr, readr, purrr, and tibble.
In this instructor-led, live training, participants will learn how to manipulate and visualize data using the tools included in the Tidyverse.
By the end of this training, participants will be able to:
- Perform data analysis and create appealing visualizations
- Draw useful conclusions from various datasets of sample data
- Filter, sort and summarize data to answer exploratory questions
- Turn processed data into informative line plots, bar plots, histograms
- Import and filter data from diverse data sources, including Excel, CSV, and SPSS files
Audience
- Beginners to the R language
- Beginners to data analysis and data visualization
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Building Web Applications in R with Shiny
7 HoursDescription:
This is a course designed to teach R users how to create web apps without needing to learn cross-browser HTML, Javascript, and CSS.
Objective:
Covers the basics of how Shiny apps work.
Covers all commonly used input/output/rendering/paneling functions from the Shiny library.