Course Outline
Supervised learning: classification and regression
- Bias-variance trade off
- Logistic regression as a classifier
- Measuring classifier performance
- Support vector machines
- Neural networks
- Random forests
Unsupervised learning: clustering, anomaly detetction
- principal component analysis
- autoencoders
Advanced neural network architectures
- convolutional neural networks for image analysis
- recurrent neural networks for time-structured data
- the long short-term memory cell
Practical examples of problems that AI can solve, e.g.
- image analysis
- forecasting complex financial series, such as stock prices,
- complex pattern recognition
- natural language processing
- recommender systems
Software platforms used for AI applications:
- TensorFlow, Theano, Caffe and Keras
- AI at scale with Apache Spark: Mlib
Understand limitations of AI methods: modes of failure, costs and common difficulties
- overfitting
- biases in observational data
- missing data
- neural network poisoning
Requirements
There are no specific requirements needed to attend this course.
Testimonials (5)
The trainer explained the content well and was engaging throughout. He stopped to ask questions and let us come to our own solutions in some practical sessions. He also tailored the course well for our needs.
Robert Baker
Course - Deep Learning with TensorFlow 2.0
Tomasz really know the information well and the course was well paced.
Raju Krishnamurthy - Google
Course - TensorFlow Extended (TFX)
Organization, adhering to the proposed agenda, the trainer's vast knowledge in this subject
Ali Kattan - TWPI
Course - Natural Language Processing with TensorFlow
Many practical tips
Pawel Dawidowski - ABB Sp. z o.o.
Course - Deep Learning with TensorFlow
Machine Translated
The instructors have extensive theoretical and practical knowledge. The instructors are communicative. During the course, participants could ask questions and receive satisfying answers.
Kamil Kurek - ING Bank Slaski S.A.; Kamil Kurek Programowanie
Course - Understanding Deep Neural Networks
Machine Translated